

OPERATING
SYSTEM
CONCEPTS

OPERATING
SYSTEM
CONCEPTS
ABRAHAM SILBERSCHATZ

PETER BAER GALVIN

GREG GAGNE

Publisher Laurie Rosatone

Editorial Director Don Fowley

Development Editor Ryann Dannelly

Freelance Developmental Editor Chris Nelson/Factotum

Executive Marketing Manager Glenn Wilson

Senior Content Manage Valerie Zaborski

Senior Production Editor Ken Santor

Media Specialist Ashley Patterson

Editorial Assistant Anna Pham

Cover Designer Tom Nery

Cover art © metha189/Shutterstock

This book was set in Palatino by the author using LaTeX and printed and bound by LSC Kendallville.

The cover was printed by LSC Kendallville.

Copyright © 2018, 2013, 2012, 2008 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written

permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the

Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (978)750-8400, fax

(978)750-4470. Requests to the Publisher for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030 (201)748-6011, fax (201)748-

6008, E-Mail: PERMREQ@WILEY.COM.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use

in their courses during the next academic year. These copies are licensed and may not be sold or

transferred to a third party. Upon completion of the review period, please return the evaluation copy to

Wiley. Return instructions and a free-of-charge return shipping label are available at

www.wiley.com/go/evalreturn. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Names: Silberschatz, Abraham, author. | Galvin, Peter B., author. | Gagne,

 Greg, author.

Title: Operating system concepts / Abraham Silberschatz, Yale University,

 Peter Baer Galvin, Pluribus Networks, Greg Gagne, Westminster College.

Description: 10th edition. | Hoboken, NJ : Wiley, [2018] | Includes

 bibliographical references and index. |

Identifiers: LCCN 2017043464 (print) | LCCN 2017045986 (ebook) | ISBN

 9781119320913 (enhanced ePub)

Subjects: LCSH: Operating systems (Computers)

Classification: LCC QA76.76.O63 (ebook) | LCC QA76.76.O63 S55825 2018 (print)

 | DDC 005.4/3--dc23

LC record available at https://lccn.loc.gov/2017043464

The inside back cover will contain printing identification and country of origin if omitted from this page. In

addition, if the ISBN on the back cover differs from the ISBN on this page, the one on the back cover is

correct.

Enhanced ePub ISBN 978-1-119-32091-3

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

mailto:PERMREQ@WILEY.COM
http://www.wiley.com/go/evalreturn
https://lccn.loc.gov/2017043464

To my children, Lemor, Sivan, and Aaron
and my Nicolette

Avi Silberschatz

To my wife, Carla,
and my children, Gwen, Owen, and Maddie

Peter Baer Galvin

To my wife, Pat,
and our sons, Tom and Jay

Greg Gagne

Preface

Operating systems are an essential part of any computer system. Similarly, a
course on operating systems is an essential part of any computer science edu-
cation. This feld is undergoing rapid change, as computers are now prevalent
in virtually every arena of day-to-day life—from embedded devices in auto-
mobiles through the most sophisticated planning tools for governments and
multinational frms. Yet the fundamental concepts remain fairly clear, and it is
on these that we base this book.

We wrote this book as a text for an introductory course in operating sys-
tems at the junior or senior undergraduate level or at the frst-year graduate
level. We hope that practitioners will also fnd it useful. It provides a clear
description of the concepts that underlie operating systems. As prerequisites,
we assume that the reader is familiar with basic data structures, computer
organization, and a high-level language, such as C or Java. The hardware topics
required for an understanding of operating systems are covered in Chapter 1.
In that chapter, we also include an overviewof the fundamental data structures
that are prevalent in most operating systems. For code examples, we use pre-
dominantly C, as well as a signifcant amount of Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are largely omitted. The bibliographical
notes at the end of each chapter contain pointers to research papers in which
results were frst presented and proved, as well as references to recent material
for further reading. In place of proofs, fgures and examples are used to suggest
why we should expect the result in question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in both open-source and commercial operating systems.
Our aim is to present these concepts and algorithms in a general setting that
is not tied to one particular operating system. However, we present a large
number of examples that pertain to the most popular and the most innovative
operating systems, including Linux, Microsoft Windows, Apple macOS (the
original name, OS X, was changed in 2016 to match the naming scheme of other
Apple products), and Solaris. We also include examples of both Android and
iOS, currently the two dominant mobile operating systems.

The organization of the text refects our many years of teaching courses
on operating systems. Consideration was also given to the feedback provided

vii

viii Preface

by the reviewers of the text, along with the many comments and suggestions
we received from readers of our previous editions and from our current and
former students. This Tenth Edition also refects most of the curriculum guide-
lines in the operating-systems area in Computer Science Curricula 2013, the most
recent curriculum guidelines for undergraduate degree programs in computer
science published by the IEEE Computing Society and the Association for Com-
puting Machinery (ACM).

What’s New in This Edition

For the Tenth Edition, we focused on revisions and enhancements aimed at
lowering costs to the students, better engaging them in the learning process,
and providing increased support for instructors.

According to the publishing industry’s most trusted market research frm,
Outsell, 2015 represented a turning point in text usage: for the frst time,
student preference for digital learning materials was higher than for print, and
the increase in preference for digital has been accelerating since.

While print remains important formany students as a pedagogical tool, the
Tenth Edition is being delivered in forms that emphasize support for learning
from digital materials. All formswe are providing dramatically reduce the cost
to students compared to the Ninth Edition. These forms are:

• Stand-alone e-text now with significan enhancements. The e-text format
for the Tenth Edition adds exercises with solutions at the ends of main
sections, hide/reveal defnitions for key terms, and a number of animated
fgures. It also includes additional “Practice Exercises” with solutions for
each chapter, extra exercises, programming problems and projects, “Fur-
ther Reading” sections, a complete glossary, and four appendices for legacy
operating systems.

• E-text with print companion bundle. For a nominal additional cost, the
e-text also is available with an abridged print companion that includes
a loose-leaf copy of the main chapter text, end-of-chapter “Practice Exer-
cises” (solutions available online), and “Further Reading” sections. Instruc-
tors may also order bound print companions for the bundled package by
contacting their Wiley account representative.

Although we highly encourage all instructors and students to take advantage
of the cost, content, and learning advantages of the e-text edition, it is possible
for instructors to work with their Wiley Account Manager to create a custom
print edition.

To explore these options further or to discuss other options, contact your
Wiley account manager (http://www.wiley.com/go/whosmyrep) or visit the
product information page for this text on wiley.com

Book Material

The book consists of 21 chapters and 4 appendices. Each chapter and appendix
contains the text, as well as the following enhancements:

http://www.wiley.com/go/whosmyrep

Preface ix

• A set of practice exercises, including solutions

• A set of regular exercises

• A set of programming problems

• A set of programming projects

• A Further Reading section

• Pop-up defnitions of important (blue) terms

• A glossary of important terms

• Animations that describe specifc key concepts

A hard copy of the text is available in book stores and online. That version has
the same text chapters as the electronic version. It does not, however, include
the appendices, the regular exercises, the solutions to the practice exercises,
the programming problems, the programming projects, and some of the other
enhancements found in this ePub electronic book.

Content of This Book

The text is organized in ten major parts:

• Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they are designed and constructed. These chapters dis-
cuss what the common features of an operating system are and what an
operating system does for the user. We include coverage of both tradi-
tional PC and server operating systems and operating systems for mobile
devices. The presentation is motivational and explanatory in nature. We
have avoided a discussion of how things are done internally in these chap-
ters. Therefore, they are suitable for individual readers or for students in
lower-level classes whowant to learnwhat an operating system is without
getting into the details of the internal algorithms.

• Process management. Chapters 3 through 5 describe the process concept
and concurrency as the heart of modern operating systems. A process is
the unit of work in a system. Such a system consists of a collection of
concurrently executing processes, some executing operating-system code
and others executing user code. These chapters cover methods for process
scheduling and interprocess communication. Also included is a detailed
discussion of threads, as well as an examination of issues related to multi-
core systems and parallel programming.

• Process synchronization. Chapters 6 through 8 cover methods for process
synchronization and deadlock handling. Because we have increased the
coverage of process synchronization, we have divided the former Chapter
5 (Process Synchronization) into two separate chapters: Chapter 6, Syn-
chronization Tools, and Chapter 7, Synchronization Examples.

• Memory management. Chapters 9 and 10 deal with the management of
main memory during the execution of a process. To improve both the

x Preface

utilization of the CPU and the speed of its response to its users, the com-
puter must keep several processes in memory. There are many different
memory-management schemes, refecting various approaches to memory
management, and the effectiveness of a particular algorithm depends on
the situation.

• Storage management. Chapters 11 and 12 describe how mass storage and
I/O are handled in a modern computer system. The I/O devices that attach
to a computer vary widely, and the operating system needs to provide a
wide range of functionality to applications to allow them to control all
aspects of these devices. We discuss system I/O in depth, including I/O
system design, interfaces, and internal system structures and functions.
In many ways, I/O devices are the slowest major components of the com-
puter. Because they represent a performance bottleneck, we also examine
performance issues associated with I/O devices.

• File systems. Chapters 13 through 15 discuss how fle systems are handled
in amodern computer system. File systems provide themechanism for on-
line storage of and access to both data and programs. We describe the clas-
sic internal algorithms and structures of storage management and provide
a frm practical understanding of the algorithms used—their properties,
advantages, and disadvantages.

• Security and protection. Chapters 16 and 17 discuss the mechanisms nec-
essary for the security and protection of computer systems. The processes
in an operating system must be protected from one another’s activities.
To provide such protection, we must ensure that only processes that have
gained proper authorization from the operating system can operate on
the fles, memory, CPU, and other resources of the system. Protection is
a mechanism for controlling the access of programs, processes, or users
to computer-system resources. This mechanism must provide a means
of specifying the controls to be imposed, as well as a means of enforce-
ment. Security protects the integrity of the information stored in the system
(both data and code), as well as the physical resources of the system, from
unauthorized access, malicious destruction or alteration, and accidental
introduction of inconsistency.

• Advanced topics. Chapters 18 and 19 discuss virtual machines and
networks/distributed systems. Chapter 18 provides an overview of
virtual machines and their relationship to contemporary operating
systems. Included is a general description of the hardware and software
techniques that make virtualization possible. Chapter 19 provides an
overview of computer networks and distributed systems, with a focus on
the Internet and TCP/IP.

• Case studies. Chapter 20 and 21 present detailed case studies of two real
operating systems—Linux and Windows 10.

• Appendices. Appendix A discusses several old infuential operating sys-
tems that are no longer in use. Appendices B through D cover in great
detaisl three older operating systems— Windows 7, BSD, and Mach.

Preface xi

Programming Environments

The text provides several example programs written in C and Java. These
programs are intended to run in the following programming environments:

• POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operat-
ing systems. Although Windows systems can also run certain POSIX pro-
grams, our coverage of POSIX focuses on Linux and UNIX systems. POSIX-
compliant systems must implement the POSIX core standard (POSIX.1);
Linux and macOS are examples of POSIX-compliant systems. POSIX also
defnes several extensions to the standards, including real-time extensions
(POSIX.1b) and an extension for a threads library (POSIX.1c, better known
as Pthreads). We provide several programming examples written in C
illustrating the POSIX base API, as well as Pthreads and the extensions for
real-time programming. These example programswere tested on Linux 4.4
and macOS 10.11 systems using the gcc compiler.

• Java. Java is a widely used programming language with a rich API and
built-in language support for concurrent and parallel programming. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating-system and networking concepts
with Java programs tested using Version 1.8 of the Java Development Kit
(JDK).

• Windows systems. The primary programming environment for Windows
systems is the Windows API, which provides a comprehensive set of func-
tions for managing processes, threads, memory, and peripheral devices.
We supply a modest number of C programs illustrating the use of this API.
Programs were tested on a system running Windows 10.

We have chosen these three programming environments because we
believe that they best represent the two most popular operating-system
models—Linux/UNIX and Windows—along with the widely used Java
environment. Most programming examples are written in C, and we expect
readers to be comfortable with this language. Readers familiar with both the
C and Java languages should easily understand most programs provided in
this text.

In some instances—such as thread creation—we illustrate a specifc con-
cept using all three programming environments, allowing the reader to con-
trast the three different libraries as they address the same task. In other situa-
tions, we may use just one of the APIs to demonstrate a concept. For example,
we illustrate shared memory using just the POSIX API; socket programming in
TCP/IP is highlighted using the Java API.

Linux Virtual Machine

To help students gain a better understanding of the Linux system, we pro-
vide a Linux virtual machine running the Ubuntu distribution with this text.
The virtual machine, which is available for download from the text website

xii Preface

(http://www.os-book.com), also provides development environments includ-
ing the gcc and Java compilers. Most of the programming assignments in the
book can be completedusing this virtualmachine, with the exception of assign-
ments that require the Windows API. The virtual machine can be installed and
run on any host operating system that can run the VirtualBox virtualization
software, which currently includes Windows 10 Linux, and macOS.

The Tenth Edition

Aswewrote this TenthEditionofOperating SystemConcepts,wewere guidedby
the sustained growth in four fundamental areas that affect operating systems:

1. Mobile operating systems

2. Multicore systems

3. Virtualization

4. Nonvolatile memory secondary storage

To emphasize these topics, we have integrated relevant coverage throughout
this new edition. For example, we have greatly increased our coverage of the
Android and iOS mobile operating systems, as well as our coverage of the
ARMv8 architecture that dominates mobile devices. We have also increased
our coverage of multicore systems, including increased coverage of APIs that
provide support for concurrency and parallelism.Nonvolatilememory devices
like SSDs are now treated as the equals of hard-disk drives in the chapters that
discuss I/O, mass storage, and fle systems.

Several of our readers have expressed support for an increase in Java
coverage, and we have provided additional Java examples throughout this
edition.

Additionally, we have rewrittenmaterial in almost every chapter by bring-
ing older material up to date and removing material that is no longer interest-
ing or relevant.We have reorderedmany chapters and have, in some instances,
moved sections from one chapter to another. We have also greatly revised
the artwork, creating several new fgures as well as modifying many existing
fgures.

Major Changes

The Tenth Edition update encompasses much more material than previous
updates, in terms of both content and new supporting material. Next, we
provide a brief outline of the major content changes in each chapter:

• Chapter 1: Introduction includes updated coverage of multicore systems,
as well as new coverage of NUMA systems and Hadoop clusters. Old
material has been updated, and new motivation has been added for the
study of operating systems.

• Chapter 2: Operating-System Structures provides a signifcantly revised
discussion of the design and implementation of operating systems. We
have updated our treatment of Android and iOS and have revised our

http://www.os-book.com
http://www.os-book.com

Preface xiii

coverage of the system boot process with a focus on GRUB for Linux
systems. New coverage of the Windows subsystem for Linux is included
as well. We have added new sections on linkers and loaders, and we now
discuss why applications are often operating-system specifc. Finally, we
have added a discussion of the BCC debugging toolset.

• Chapter 3: Processes simplifes the discussion of scheduling so that it
now includes only CPU scheduling issues. New coverage describes the
memory layout of a C program, the Android process hierarchy, Mach
message passing, and Android RPCs. We have also replaced coverage of
the traditional UNIX/Linux init process with coverage of systemd.

• Chapter 4: Threads and Concurrency (previously Threads) increases the
coverage of support for concurrent and parallel programming at the API
and library level. We have revised the section on Java threads so that it
now includes futures and have updated the coverage of Apple’s Grand
Central Dispatch so that it now includes Swift. New sections discuss fork-
join parallelism using the fork-join framework in Java, as well as Intel
thread building blocks.

• Chapter 5: CPU Scheduling (previously Chapter 6) revises the coverage of
multilevel queue andmulticore processing scheduling.We have integrated
coverage of NUMA-aware scheduling issues throughout, including how
this scheduling affects load balancing. We also discuss related modifca-
tions to the Linux CFS scheduler. New coverage combines discussions of
round-robin and priority scheduling, heterogeneous multiprocessing, and
Windows 10 scheduling.

• Chapter 6: Synchronization Tools (previously part of Chapter 5, Process
Synchronization) focuses on various tools for synchronizing processes.
Signifcant new coverage discusses architectural issues such as instruction
reordering and delayedwrites to buffers. The chapter also introduces lock-
free algorithms using compare-and-swap (CAS) instructions. No specifc
APIs are presented; rather, the chapter provides an introduction to race
conditions and general tools that can be used to prevent data races. Details
include new coverage of memory models, memory barriers, and liveness
issues.

• Chapter 7: Synchronization Examples (previously part of Chapter 5,
Process Synchronization) introduces classical synchronization problems
and discusses specifc API support for designing solutions that solve
these problems. The chapter includes new coverage of POSIX named and
unnamed semaphores, as well as condition variables. A new section on
Java synchronization is included as well.

• Chapter 8: Deadlocks (previously Chapter 7) provides minor updates,
including a new section on livelock and a discussion of deadlock as an
example of a liveness hazard. The chapter includes new coverage of the
Linux lockdep and the BCC deadlock detector tools, aswell as coverage
of Java deadlock detection using thread dumps.

• Chapter 9: Main Memory (previously Chapter 8) includes several revi-
sions that bring the chapter up to date with respect to memory manage-

xiv Preface

ment on modern computer systems. We have added new coverage of the
ARMv8 64-bit architecture, updated the coverage of dynamic link libraries,
and changed swapping coverage so that it now focuses on swapping pages
rather than processes. We have also eliminated coverage of segmentation.

• Chapter 10: Virtual Memory (previously Chapter 9) contains several revi-
sions, including updated coverage ofmemory allocation onNUMAsystems
and global allocation using a free-frame list. New coverage includes com-
pressed memory, major/minor page faults, and memory management in
Linux and Windows 10.

• Chapter 11: Mass-Storage Structure (previously Chapter 10) adds cover-
age of nonvolatile memory devices, such as fash and solid-state disks.
Hard-drive scheduling is simplifed to show only currently used algo-
rithms. Also included are a new section on cloud storage, updated RAID
coverage, and a new discussion of object storage.

• Chapter 12, I/O (previously Chapter 13) updates the coverage of
technologies and performance numbers, expands the coverage of
synchronous/asynchronous and blocking/nonblocking I/O, and adds a
section on vectored I/O. It also expands coverage of power management
for mobile operating systems.

• Chapter 13: File-System Interface (previously Chapter 11) has been
updated with information about current technologies. In particular, the
coverage of directory structures has been improved, and the coverage of
protection has been updated. The memory-mapped fles section has been
expanded, and a Windows API example has been added to the discussion
of shared memory. The ordering of topics is refactored in Chapter 13 and
14.

• Chapter 14: File-System Implementation (previously Chapter 12) has
been updated with coverage of current technologies. The chapter now
includes discussions of TRIM and the Apple File System. In addition, the
discussion of performance has been updated, and the coverage of journal-
ing has been expanded.

• Chapter 15: File System Internals is new and contains updated informa-
tion from previous Chapters 11 and 12.

• Chapter 16: Security (previously Chapter 15) now precedes the protec-
tion chapter. It includes revised and updated terms for current security
threats and solutions, including ransomware and remote access tools. The
principle of least privilege is emphasized. Coverage of code-injection vul-
nerabilities and attacks has been revised and now includes code samples.
Discussion of encryption technologies has been updated to focus on the
technologies currently used. Coverage of authentication (by passwords
and other methods) has been updated and expanded with helpful hints.
Additions include a discussion of address-space layout randomization and
a new summary of security defenses. The Windows 7 example has been
updated to Windows 10.

• Chapter 17: Protection (previously Chapter 14) contains major changes.
The discussion of protection rings and layers has been updated and now

Preface xv

refers to the Bell–LaPadula model and explores the ARM model of Trust-
Zones and Secure Monitor Calls. Coverage of the need-to-know principle
has been expanded, as has coverage of mandatory access control. Subsec-
tions on Linux capabilities, Darwin entitlements, security integrity protec-
tion, system-call fltering, sandboxing, and code signing have been added.
Coverage of run-time-based enforcement in Java has also been added,
including the stack inspection technique.

• Chapter 18: Virtual Machines (previously Chapter 16) includes added
details about hardware assistance technologies. Also expanded is the
topic of application containment, now including containers, zones, docker,
and Kubernetes. A new section discusses ongoing virtualization research,
including unikernels, library operating systems, partitioning hypervisors,
and separation hypervisors.

• Chapter 19, Networks and Distributed Systems (previously Chapter 17)
has been substantially updated and now combines coverage of computer
networks and distributed systems. The material has been revised to bring
it up to date with respect to contemporary computer networks and dis-
tributed systems. The TCP/IP model receives added emphasis, and a dis-
cussion of cloud storage has been added. The section on network topolo-
gies has been removed. Coverage of name resolution has been expanded
and a Java example added. The chapter also includes new coverage of dis-
tributed fle systems, including MapReduce on top of Google fle system,
Hadoop, GPFS, and Lustre.

• Chapter 20: The Linux System (previously Chapter 18) has been updated
to cover the Linux 4.i kernel.

• Chapter 21: The Windows 10 System is a new chapter that covers the
internals of Windows 10.

• Appendix A: Influentia Operating Systems has been updated to include
material from chapters that are no longer covered in the text.

Supporting Website

When you visit the website supporting this text at http://www.os-book.com,
you can download the following resources:

• Linux virtual machine

• C and Java source code

• The complete set of fgures and illustrations

• FreeBSD, Mach, and Windows 7 case studies

• Errata

• Bibliography

Notes to Instructors

On thewebsite for this text, we provide several sample syllabi that suggest var-
ious approaches for using the text in both introductory and advanced courses.

http://www.os-book.com

xvi Preface

As a general rule, we encourage instructors to progress sequentially through
the chapters, as this strategy provides the most thorough study of operat-
ing systems. However, by using the sample syllabi, an instructor can select a
different ordering of chapters (or subsections of chapters).

In this edition, we have added many new written exercises and pro-
gramming problems and projects. Most of the new programming assignments
involve processes, threads, process scheduling, process synchronization, and
memory management. Some involve adding kernel modules to the Linux sys-
tem, which requires using either the Linux virtual machine that accompanies
this text or another suitable Linux distribution.

Solutions to written exercises and programming assignments are avail-
able to instructors who have adopted this text for their operating-system
class. To obtain these restricted supplements, contact your local John Wiley &
Sons sales representative. You can fnd your Wiley representative by going to
http://www.wiley.com/college and clicking “Who’s my rep?”

Notes to Students

We encourage you to take advantage of the practice exercises that appear at the
end of each chapter. We also encourage you to read through the study guide,
which was prepared by one of our students. Finally, for students who are unfa-
miliar with UNIX and Linux systems, we recommend that you download and
install the Linux virtual machine that we include on the supporting website.
Not onlywill this provide youwith a new computing experience, but the open-
source nature of Linux will allow you to easily examine the inner details of this
popular operating system. We wish you the very best of luck in your study of
operating systems!

Contacting Us

We have endeavored to eliminate typos, bugs, and the like from the text. But,
as in new releases of software, bugs almost surely remain. An up-to-date errata
list is accessible from the book’s website. We would be grateful if you would
notify us of any errors or omissions in the book that are not on the current list
of errata.

We would be glad to receive suggestions on improvements to the book.
We also welcome any contributions to the book website that could be of use
to other readers, such as programming exercises, project suggestions, on-line
labs and tutorials, and teaching tips. E-mail should be addressed to os-book-
authors@cs.yale.edu.

Acknowledgments

Many people have helped us with this Tenth Edition, as well as with the
previous nine editions from which it is derived.

http://www.wiley.com/college
mailto:os-book-authors@cs.yale.edu
mailto:os-book-authors@cs.yale.edu
mailto:os-book-authors@cs.yale.edu

Preface xvii

Tenth Edition

• Rick Farrow provided expert advice as a technical editor.

• Jonathan Levin helped out with coverage of mobile systems, protection,
and security.

• Alex Ionescu updated the previousWindows 7 chapter to provide Chapter
21: Windows 10.

• Sarah Diesburg revised Chapter 19: Networks and Distributed Systems.

• Brendan Gregg provided guidance on the BCC toolset.

• Richard Stallman (RMS) supplied feedback on the description of free and
open-source software.

• Robert Love provided updates to Chapter 20: The Linux System.

• Michael Shapiro helped with storage and I/O technology details.

• Richard West provided insight on areas of virtualization research.

• Clay Breshears helped with coverage of Intel thread-building blocks.

• GerryHowser gave feedback onmotivating the study of operating systems
and also tried out new material in his class.

• Judi Paige helped with generating fgures and presentation of slides.

• Jay Gagne and Audra Rissmeyer prepared new artwork for this edition.

• Owen Galvin provided technical editing for Chapter 11 and Chapter 12.

• Mark Wogahn has made sure that the software to produce this book (LATEX
and fonts) works properly.

• Ranjan Kumar Meher rewrote some of the LATEX software used in the pro-
duction of this new text.

Previous Editions

• First three editions. This book is derived from the previous editions, the
frst three of which were coauthored by James Peterson.

• General contributions. Others who helped us with previous editions
include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black, Joseph
Boykin, Jeff Brumfeld, Gael Buckley, Roy Campbell, P. C. Capon, John
Carpenter, Gil Carrick, Thomas Casavant, Bart Childs, Ajoy Kumar Datta,
Joe Deck, Sudarshan K. Dhall, Thomas Doeppner, Caleb Drake, M. Rasit
Eskicioğlu, Hans Flack, Robert Fowler, G. Scott Graham, Richard Guy,
MaxHailperin, Rebecca Hartman,WayneHathaway, Christopher Haynes,
Don Heller, Bruce Hillyer, Mark Holliday, Dean Hougen, Michael Huang,
Ahmed Kamel, Morty Kewstel, Richard Kieburtz, Carol Kroll, Morty
Kwestel, Thomas LeBlanc, John Leggett, Jerrold Leichter, Ted Leung, Gary
Lippman, Carolyn Miller, Michael Molloy, Euripides Montagne, Yoichi
Muraoka, Jim M. Ng, Banu Özden, Ed Posnak, Boris Putanec, Charles

xviii Preface

Qualline, John Quarterman, Mike Reiter, Gustavo Rodriguez-Rivera,
Carolyn J. C. Schauble, Thomas P. Skinner, Yannis Smaragdakis, Jesse
St. Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, John
Sterling, Hal Stern, Louis Stevens, Pete Thomas, David Umbaugh, Steve
Vinoski, Tommy Wagner, Larry L. Wear, John Werth, James M. Westall, J.
S. Weston, and Yang Xiang

• Specifi Contributions

◦ Robert Love updated both Chapter 20 and the Linux coverage through-
out the text, as well as answering many of our Android-related ques-
tions.

◦ Appendix B was written by Dave Probert and was derived from Chap-
ter 22 of the Eighth Edition of Operating System Concepts.

◦ Jonathan Katz contributed to Chapter 16. Richard West provided input
into Chapter 18. Salahuddin Khan updated Section 16.7 to provide new
coverage of Windows 7 security.

◦ Parts of Chapter 19were derived from a paper by Levy and Silberschatz
[1990].

◦ Chapter 20 was derived from an unpublished manuscript by Stephen
Tweedie.

◦ Cliff Martin helpedwith updating the UNIX appendix to cover FreeBSD.

◦ Some of the exercises and accompanying solutions were supplied by
Arvind Krishnamurthy.

◦ AndrewDeNicola prepared the student study guide that is available on
our website. Some of the slides were prepared by Marilyn Turnamian.

◦ Mike Shapiro, Bryan Cantrill, and JimMauro answered several Solaris-
related questions, and Bryan Cantrill from Sun Microsystems helped
with the ZFS coverage. Josh Dees and Rob Reynolds contributed cover-
age of Microsoft’s NET.

◦ Owen Galvin helped copy-edit Chapter 18 edition.

Book Production

The Executive Editor was Don Fowley. The Senior Production Editor was Ken
Santor. The Freelance Developmental Editor was Chris Nelson. The Assistant
Developmental Editorwas RyannDannelly. The cover designerwas TomNery.
The copyeditor was Beverly Peavler. The freelance proofreader was Katrina
Avery. The freelance indexer was WordCo, Inc. The Aptara LaTex team con-
sisted of Neeraj Saxena and Lav kush.

Personal Notes

Avi would like to acknowledge Valerie for her love, patience, and support
during the revision of this book.

Preface xix

Peter would like to thank his wife Carla and his children, Gwen, Owen,
and Maddie.

Greg would like to acknowledge the continued support of his family: his
wife Pat and sons Thomas and Jay.

Abraham Silberschatz, New Haven, CT
Peter Baer Galvin, Boston, MA
Greg Gagne, Salt Lake City, UT

Contents

PART ONE OVERVIEW

Chapter 1 Introduction
1.1 What Operating Systems Do 4
1.2 Computer-System Organization 7
1.3 Computer-System Architecture 15
1.4 Operating-System Operations 21
1.5 Resource Management 27
1.6 Security and Protection 33
1.7 Virtualization 34

1.8 Distributed Systems 35
1.9 Kernel Data Structures 36

1.10 Computing Environments 40
1.11 Free and Open-Source Operating

Systems 46
Practice Exercises 53
Further Reading 54

Chapter 2 Operating-System Structures
2.1 Operating-System Services 55
2.2 User and Operating-System

Interface 58
2.3 System Calls 62
2.4 System Services 74
2.5 Linkers and Loaders 75
2.6 Why Applications Are

Operating-System Specific 77

2.7 Operating-System Design and
Implementation 79

2.8 Operating-System Structure 81
2.9 Building and Booting an Operating

System 92
2.10 Operating-System Debugging 95
2.11 Summary 100

Practice Exercises 101
Further Reading 101

PART TWO PROCESS MANAGEMENT

Chapter 3 Processes
3.1 Process Concept 106
3.2 Process Scheduling 110
3.3 Operations on Processes 116
3.4 Interprocess Communication 123
3.5 IPC in Shared-Memory Systems 125
3.6 IPC in Message-Passing Systems 127

3.7 Examples of IPC Systems 132
3.8 Communication in Client–

Server Systems 145
3.9 Summary 153

Practice Exercises 154
Further Reading 156

Contents

Chapter 4 Threads & Concurrency
4.1 Overview 160
4.2 Multicore Programming 162
4.3 Multithreading Models 166
4.4 Thread Libraries 168
4.5 Implicit Threading 176

4.6 Threading Issues 188
4.7 Operating-System Examples 194
4.8 Summary 196

Practice Exercises 197
Further Reading 198

Chapter 5 CPU Scheduling
5.1 Basic Concepts 200
5.2 Scheduling Criteria 204
5.3 Scheduling Algorithms 205
5.4 Thread Scheduling 217
5.5 Multi-Processor Scheduling 220
5.6 Real-Time CPU Scheduling 227

5.7 Operating-System Examples 234
5.8 Algorithm Evaluation 244
5.9 Summary 250

Practice Exercises 251
Further Reading 254

PART THREE PROCESS SYNCHRONIZATION

Chapter 6 Synchronization Tools
6.1 Background 257
6.2 The Critical-Section Problem 260
6.3 Peterson’s Solution 262
6.4 Hardware Support for

Synchronization 265
6.5 Mutex Locks 270
6.6 Semaphores 272

6.7 Monitors 276
6.8 Liveness 283
6.9 Evaluation 284

6.10 Summary 286
Practice Exercises 287
Further Reading 288

Chapter 7 Synchronization Examples
7.1 Classic Problems of

Synchronization 289
7.2 Synchronization within the Kernel 295
7.3 POSIX Synchronization 299
7.4 Synchronization in Java 303

7.5 Alternative Approaches 311
7.6 Summary 314

Practice Exercises 314
Further Reading 315

Chapter 8 Deadlocks
8.1 System Model 318
8.2 Deadlock in Multithreaded

Applications 319
8.3 Deadlock Characterization 321
8.4 Methods for Handling Deadlocks 326
8.5 Deadlock Prevention 327

8.6 Deadlock Avoidance 330
8.7 Deadlock Detection 337
8.8 Recovery from Deadlock 341
8.9 Summary 343

Practice Exercises 344
Further Reading 346

Contents

PART FOUR MEMORY MANAGEMENT

Chapter 9 Main Memory
9.1 Background 349
9.2 Contiguous Memory Allocation 356
9.3 Paging 360
9.4 Structure of the Page Table 371
9.5 Swapping 376

9.6 Example: Intel 32- and 64-bit
Architectures 379

9.7 Example: ARMv8 Architecture 383
9.8 Summary 384

Practice Exercises 385
Further Reading 387

Chapter 10 Virtual Memory
10.1 Background 389
10.2 Demand Paging 392
10.3 Copy-on-Write 399
10.4 Page Replacement 401
10.5 Allocation of Frames 413
10.6 Thrashing 419
10.7 Memory Compression 425

10.8 Allocating Kernel Memory 426
10.9 Other Considerations 430

10.10 Operating-System Examples 436
10.11 Summary 440

Practice Exercises 441
Further Reading 444

PART FIVE STORAGE MANAGEMENT

Chapter 11 Mass-Storage Structure
11.1 Overview of Mass-Storage

Structure 449
11.2 HDD Scheduling 457
11.3 NVM Scheduling 461
11.4 Error Detection and Correction 462
11.5 Storage Device Management 463

11.6 Swap-Space Management 467
11.7 Storage Attachment 469
11.8 RAID Structure 473
11.9 Summary 485

Practice Exercises 486
Further Reading 487

Chapter 12 I/O Systems
12.1 Overview 489
12.2 I/O Hardware 490
12.3 Application I/O Interface 500
12.4 Kernel I/O Subsystem 508
12.5 Transforming I/O Requests to

Hardware Operations 516

12.6 STREAMS 519
12.7 Performance 521
12.8 Summary 524

Practice Exercises 525
Further Reading 526

Contents

PART SIX FILE SYSTEM

Chapter 13 File-System Interface
13.1 File Concept 529
13.2 Access Methods 539
13.3 Directory Structure 541
13.4 Protection 550

13.5 Memory-Mapped Files 555
13.6 Summary 560

Practice Exercises 560
Further Reading 561

Chapter 14 File-System Implementation
14.1 File-System Structure 564
14.2 File-System Operations 566
14.3 Directory Implementation 568
14.4 Allocation Methods 570
14.5 Free-Space Management 578
14.6 Efficiency and Performance 582

14.7 Recovery 586
14.8 Example: The WAFL File System 589
14.9 Summary 593

Practice Exercises 594
Further Reading 594

Chapter 15 File-System Internals
15.1 File Systems 597
15.2 File-System Mounting 598
15.3 Partitions and Mounting 601
15.4 File Sharing 602
15.5 Virtual File Systems 603
15.6 Remote File Systems 605

15.7 Consistency Semantics 608
15.8 NFS 610
15.9 Summary 615

Practice Exercises 616
Further Reading 617

PART SEVEN SECURITY AND PROTECTION

Chapter 16 Security
16.1 The Security Problem 621
16.2 Program Threats 625
16.3 System and Network Threats 634
16.4 Cryptography as a Security Tool 637
16.5 User Authentication 648

16.6 Implementing Security Defenses 653
16.7 An Example: Windows 10 662
16.8 Summary 664

Further Reading 665

Chapter 17 Protection
17.1 Goals of Protection 667
17.2 Principles of Protection 668
17.3 Protection Rings 669
17.4 Domain of Protection 671
17.5 Access Matrix 675
17.6 Implementation of the Access

Matrix 679
17.7 Revocation of Access Rights 682
17.8 Role-Based Access Control 683

17.9 Mandatory Access Control
(MAC) 684

17.10 Capability-Based Systems 685
17.11 Other Protection Improvement

Methods 687
17.12 Language-Based Protection 690
17.13 Summary 696

Further Reading 697

Contents

PART EIGHT ADVANCED TOPICS

Chapter 18 Virtual Machines
18.1 Overview 701
18.2 History 703
18.3 Benefits and Features 704
18.4 Building Blocks 707
18.5 Types of VMs and Their

Implementations 713

18.6 Virtualization and Operating-System
Components 719

18.7 Examples 726
18.8 Virtualization Research 728
18.9 Summary 729

Further Reading 730

Chapter 19 Networks and Distributed Systems
19.1 Advantages of Distributed

Systems 733
19.2 Network Structure 735
19.3 Communication Structure 738
19.4 Network and Distributed Operating

Systems 749
19.5 Design Issues in Distributed

Systems 753

19.6 Distributed File Systems 757
19.7 DFS Naming and Transparency 761
19.8 Remote File Access 764
19.9 Final Thoughts on Distributed File

Systems 767
19.10 Summary 768

Practice Exercises 769
Further Reading 770

PART NINE CASE STUDIES

Chapter 20 The Linux System
20.1 Linux History 775
20.2 Design Principles 780
20.3 Kernel Modules 783
20.4 Process Management 786
20.5 Scheduling 790
20.6 Memory Management 795
20.7 File Systems 803

20.8 Input and Output 810
20.9 Interprocess Communication 812

20.10 Network Structure 813
20.11 Security 816
20.12 Summary 818

Practice Exercises 819
Further Reading 819

Chapter 21 Windows 10
21.1 History 821
21.2 Design Principles 826
21.3 System Components 838
21.4 Terminal Services and Fast User

Switching 874

21.5 File System 875
21.6 Networking 880
21.7 Programmer Interface 884
21.8 Summary 895

Practice Exercises 896
Further Reading 897

Contents

PART TEN APPENDICES

Chapter A Influentia Operating Systems
A.1 Feature Migration 1
A.2 Early Systems 2
A.3 Atlas 9
A.4 XDS-940 10
A.5 THE 11
A.6 RC 4000 11
A.7 CTSS 12
A.8 MULTICS 13
A.9 IBM OS/360 13

A.10 TOPS-20 15
A.11 CP/M and MS/DOS 15
A.12 Macintosh Operating System and

Windows 16
A.13 Mach 16
A.14 Capability-based Systems—Hydra and

CAP 18
A.15 Other Systems 20

Further Reading 21

Chapter B Windows 7
B.1 History 1
B.2 Design Principles 3
B.3 System Components 10
B.4 Terminal Services and Fast User

Switching 34
B.5 File System 35

B.6 Networking 41
B.7 Programmer Interface 46
B.8 Summary 55

Practice Exercises 55
Further Reading 56

Chapter C BSD UNIX
C.1 UNIX History 1
C.2 Design Principles 6
C.3 Programmer Interface 8
C.4 User Interface 15
C.5 Process Management 18
C.6 Memory Management 22

C.7 File System 25
C.8 I/O System 33
C.9 Interprocess Communication 36

C.10 Summary 41
Further Reading 42

Chapter D The Mach System
D.1 History of the Mach System 1
D.2 Design Principles 3
D.3 System Components 4
D.4 Process Management 7
D.5 Interprocess Communication 13

D.6 Memory Management 18
D.7 Programmer Interface 23
D.8 Summary 24

Further Reading 25

Credits 963

Index 965

Part One

Overview
An operating system acts as an intermediary between the user of a com-
puter and the computer hardware. The purpose of an operating system
is to provide an environment in which a user can execute programs in a
convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardwaremust provide appropriatemechanisms to ensure the
correct operation of the computer system and to prevent programs from
interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task, and it is important that the goals of the system be
well defined before the design begins.

Because an operating system is large and complex, it must be cre-
ated piece by piece. Each of these pieces should be a well-delineated
portion of the system, with carefully defined inputs, outputs, and func-
tions.

1CHAPTER

Introduction

An operating system is software that manages a computer’s hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how they vary in accomplishing these tasks in a wide
variety of computing environments. Operating systems are everywhere, from
cars and home appliances that include “Internet of Things” devices, to smart
phones, personal computers, enterprise computers, and cloud computing envi-
ronments.

In order to explore the role of an operating system in a modern computing
environment, it is important frst to understand the organization and architec-
ture of computer hardware. This includes the CPU, memory, and I/O devices,
as well as storage. A fundamental responsibility of an operating system is to
allocate these resources to programs.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defned inputs, outputs, and functions. In this chapter,
we provide a general overview of the major components of a contemporary
computer system as well as the functions provided by the operating system.
Additionally, we cover several topics to help set the stage for the remainder of
the text: data structures used in operating systems, computing environments,
and open-source and free operating systems.

CHAPTER OBJECTIVES

• Describe the general organization of a computer system and the role of
interrupts.

• Describe the components in a modern multiprocessor computer system.

• Illustrate the transition from user mode to kernel mode.

• Discuss how operating systems are used in various computing environ-
ments.

• Provide examples of free and open-source operating systems.

3

4 Chapter 1 Introduction

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs,
and a user (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—defne the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function
by itself. It simply provides an environment within which other programs can
do useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being used.
Many computer users sit with a laptop or in front of a PC consisting of a
monitor, keyboard, and mouse. Such a system is designed for one user to
monopolize its resources. The goal is to maximize the work (or play) that the
user is performing. In this case, the operating system is designed mostly for
ease of use, with some attention paid to performance and security and none
paid to resource utilization—how various hardware and software resources
are shared.

(compilers, web browsers, development kits, etc.)

user

application programs

operating system

computer hardware
(CPU, memory, I/O devices, etc.)

Figure 1.1 Abstract view of the components of a computer system.

1.1 What Operating Systems Do 5

Increasingly, many users interact withmobile devices such as smartphones
and tablets—devices that are replacing desktop and laptop computer systems
for some users. These devices are typically connected to networks through
cellular or other wireless technologies. The user interface formobile computers
generally features a touch screen, where the user interacts with the system by
pressing and swiping fngers across the screen rather than using a physical
keyboard andmouse.Manymobile devices also allowusers to interact through
a voice recognition interface, such as Apple’s Siri.

Some computers have little or no user view. For example, embedded com-
puters in home devices and automobiles may have numeric keypads and may
turn indicator lights on or off to show status, but they and their operating sys-
tems and applications are designed primarily to runwithout user intervention.

1.1.2 System View

From the computer’s point of view, the operating system is the program most
intimately involved with the hardware. In this context, we can view an oper-
ating system as a resource allocator. A computer system has many resources
that may be required to solve a problem: CPU time, memory space, storage
space, I/Odevices, and so on. The operating systemacts as themanager of these
resources. Facing numerous and possibly conficting requests for resources, the
operating system must decide how to allocate them to specifc programs and
users so that it can operate the computer system effciently and fairly.

A slightly different view of an operating system emphasizes the need to
control the various I/O devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especially concerned
with the operation and control of I/O devices.

1.1.3 Defining Operating Systems

By now, you can probably see that the term operating system covers many
roles and functions. That is the case, at least in part, because of the myriad
designs and uses of computers. Computers are present within toasters, cars,
ships, spacecraft, homes, and businesses. They are the basis for gamemachines,
cable TV tuners, and industrial control systems.

To explain this diversity, we can turn to the history of computers. Although
computers have a relatively short history, they have evolved rapidly. Comput-
ing started as an experiment to determine what could be done and quickly
moved to fxed-purpose systems for military uses, such as code breaking and
trajectory plotting, and governmental uses, such as census calculation. Those
early computers evolved into general-purpose,multifunctionmainframes, and
that’s when operating systemswere born. In the 1960s, Moore’s Law predicted
that the number of transistors on an integrated circuit would double every 18
months, and that prediction has held true. Computers gained in functionality
and shrank in size, leading to a vast number of uses and a vast number and
variety of operating systems. (See Appendix A for more details on the history
of operating systems.)

How, then, can we defnewhat an operating system is? In general, we have
no completely adequate defnition of an operating system. Operating systems

6 Chapter 1 Introduction

exist because they offer a reasonable way to solve the problem of creating
a usable computing system. The fundamental goal of computer systems is
to execute programs and to make solving user problems easier. Computer
hardware is constructed toward this goal. Since bare hardware alone is not
particularly easy to use, application programs are developed. These programs
require certain common operations, such as those controlling the I/O devices.
The common functions of controlling and allocating resources are then brought
together into one piece of software: the operating system.

In addition, we have no universally accepted defnition of what is part of
the operating system. A simple viewpoint is that it includes everything a ven-
dor ships when you order “the operating system.” The features included, how-
ever, vary greatly across systems. Some systems take up less than a megabyte
of space and lack even a full-screen editor, whereas others require gigabytes
of space and are based entirely on graphical windowing systems. Amore com-
mon defnition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called the
kernel. Along with the kernel, there are two other types of programs: system
programs, which are associated with the operating system but are not neces-
sarily part of the kernel, and application programs, which include all programs
not associated with the operation of the system.

The matter of what constitutes an operating system became increasingly
important as personal computers becamemore widespread and operating sys-
tems grew increasingly sophisticated. In 1998, the United States Department of
Justice fled suit against Microsoft, in essence claiming that Microsoft included
toomuch functionality in its operating systems and thus prevented application
vendors from competing. (For example, a web browser was an integral part of
Microsoft’s operating systems.)As a result,Microsoftwas found guilty of using
its operating-system monopoly to limit competition.

Today, however, if we look at operating systems for mobile devices, we
see that once again the number of features constituting the operating system
is increasing. Mobile operating systems often include not only a core kernel
but also middleware—a set of software frameworks that provide additional
services to application developers. For example, each of the two most promi-
nentmobile operating systems—Apple’s iOS andGoogle’s Android—features

WHY STUDY OPERATING SYSTEMS?

Although there are many practitioners of computer science, only a small per-
centage of themwill be involved in the creation or modifcation of an operat-
ing system. Why, then, study operating systems and how they work? Simply
because, as almost all code runs on top of an operating system, knowledge
of how operating systems work is crucial to proper, effcient, effective, and
secure programming.Understanding the fundamentals of operating systems,
how they drive computer hardware, andwhat they provide to applications is
not only essential to those who program them but also highly useful to those
who write programs on them and use them.

1.2 Computer-System Organization 7

a core kernel alongwithmiddleware that supports databases, multimedia, and
graphics (to name only a few).

In summary, for our purposes, the operating system includes the always-
running kernel, middleware frameworks that ease application development
and provide features, and system programs that aid in managing the system
while it is running. Most of this text is concerned with the kernel of general-
purpose operating systems, but other components are discussed as needed to
fully explain operating system design and operation.

1.2 Computer-System Organization

Amodern general-purpose computer system consists of one or more CPUs and
a number of device controllers connected through a common bus that provides
access between components and shared memory (Figure 1.2). Each device
controller is in charge of a specifc type of device (for example, a disk drive,
audio device, or graphics display). Depending on the controller, more than one
device may be attached. For instance, one system USB port can connect to a
USB hub, to which several devices can connect. A device controller maintains
some local buffer storage and a set of special-purpose registers. The device
controller is responsible for moving the data between the peripheral devices
that it controls and its local buffer storage.

Typically, operating systems have a device driver for each device con-
troller. This device driver understands the device controller and provides the
rest of the operating systemwith a uniform interface to the device. The CPU and
the device controllers can execute in parallel, competing for memory cycles. To
ensure orderly access to the sharedmemory, amemory controller synchronizes
access to the memory.

In the following subsections, we describe some basics of how such a system
operates, focusing on three key aspects of the system. We start with interrupts,
which alert the CPU to events that require attention. We then discuss storage
structure and I/O structure.

USB controller

keyboard printermouse monitor
disks

graphics
adapter

disk
controller

memory

CPU

system bus

on-line

Figure 1.2 A typical PC computer system.

8 Chapter 1 Introduction

1.2.1 Interrupts

Consider a typical computer operation: a program performing I/O. To start an
I/O operation, the device driver loads the appropriate registers in the device
controller. The device controller, in turn, examines the contents of these reg-
isters to determine what action to take (such as “read a character from the
keyboard”). The controller starts the transfer of data from the device to its local
buffer. Once the transfer of data is complete, the device controller informs the
device driver that it has fnished its operation. The device driver then gives
control to other parts of the operating system, possibly returning the data or a
pointer to the data if the operation was a read. For other operations, the device
driver returns status information such as “write completed successfully” or
“device busy”. But how does the controller inform the device driver that it has
fnished its operation? This is accomplished via an interrupt.

1.2.1.1 Overview

Hardware may trigger an interrupt at any time by sending a signal to the
CPU, usually by way of the system bus. (There may be many buses within
a computer system, but the system bus is the main communications path
between the major components.) Interrupts are used for many other purposes
as well and are a key part of how operating systems and hardware interact.

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fxed location. The fxed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A timeline of this operation is shown in Figure 1.3.
To run the animation assicated with this fgure please click here.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interruptmust transfer control to the appropriate interrupt service routine.
The straightforward method for managing this transfer would be to invoke
a generic routine to examine the interrupt information. The routine, in turn,

Figure 1.3 Interrupt timeline for a single program doing output.

1.2 Computer-System Organization 9

would call the interrupt-specifc handler.However, interruptsmust be handled
quickly, as they occur very frequently. A table of pointers to interrupt routines
can be used instead to provide the necessary speed. The interrupt routine
is called indirectly through the table, with no intermediate routine needed.
Generally, the table of pointers is stored in lowmemory (the frst hundred or so
locations). These locations hold the addresses of the interrupt service routines
for the various devices. This array, or interrupt vector, of addresses is then
indexed by a unique number, given with the interrupt request, to provide the
address of the interrupt service routine for the interrupting device. Operating
systems as different as Windows and UNIX dispatch interrupts in this manner.

The interrupt architecturemust also save the state information of whatever
was interrupted, so that it can restore this information after servicing the
interrupt. If the interrupt routine needs to modify the processor state—for
instance, bymodifying register values—itmust explicitly save the current state
and then restore that state before returning. After the interrupt is serviced, the
saved return address is loaded into the program counter, and the interrupted
computation resumes as though the interrupt had not occurred.

1.2.1.2 Implementation

The basic interrupt mechanism works as follows. The CPU hardware has a
wire called the interrupt-request line that the CPU senses after executing every
instruction. When the CPU detects that a controller has asserted a signal on
the interrupt-request line, it reads the interrupt number and jumps to the
interrupt-handler routine by using that interrupt number as an index into
the interrupt vector. It then starts execution at the address associated with
that index. The interrupt handler saves any state it will be changing during
its operation, determines the cause of the interrupt, performs the necessary
processing, performs a state restore, and executes a return from interrupt
instruction to return the CPU to the execution state prior to the interrupt. We
say that the device controller raises an interrupt by asserting a signal on the
interrupt request line, the CPU catches the interrupt and dispatches it to the
interrupt handler, and the handler clears the interrupt by servicing the device.
Figure 1.4 summarizes the interrupt-driven I/O cycle.

The basic interruptmechanism just described enables the CPU to respond to
an asynchronous event, as when a device controller becomes ready for service.
In amodern operating system, however,we needmore sophisticated interrupt-
handling features.

1. We need the ability to defer interrupt handling during critical processing.

2. We need an effcient way to dispatch to the proper interrupt handler for
a device.

3. We need multilevel interrupts, so that the operating system can distin-
guish between high- and low-priority interrupts and can respond with
the appropriate degree of urgency.

In modern computer hardware, these three features are provided by the CPU
and the interrupt-controller hardware.

